آدرس

آدرس فعلی سایت koreafan.eu است در صورت بروز هر مشکل آدرس بعدی koreafan.. میباشد .

ساماندهي

انجمن کره فن در ستاد ساماندهي پايگاه هاي اينترنتي ثبت شد تاپیک

گروه تلگرام انجمن

گروه تلگرامی انجمن برای اطلاع رسانی از مشکلات انجمن و درخواست ها لطفا عضو بشین کلیک کنید



اعداد حقیقی
زمان کنونی: 09-20-2020، 03:46 AM
کاربران در حال بازدید این موضوع: 1 مهمان
نویسنده: SOG.AND
آخرین ارسال: SOG.AND
پاسخ 0
بازدید 392

امتیاز موضوع:
  • 0 رای - 0 میانگین
  • 1
  • 2
  • 3
  • 4
  • 5

[-]
کلمات کلیدی
اعداد حقیقی

اعداد حقیقی
#1
:: مجموعه ی اعداد حقیقی ::.




عدد حقیقی : (real number)

حقیقی منسوب به حقیقت است و به معنی واقعی، اصلی و مقابل کلمه ی مجازی می باشد .

در ریاضی هر یک از عددهای گویا و عددهای اصم را یک عدد حقیقی می نامند.


مجموعه ی عدد های حقیقی:

مجموعه ی تمام عددهای گویا و عددهای اصم را مجموعه اعداد حقیقی می نامیم و آنرا با حرف نمایش می دهیم.


عدد اصم (گنگ): ir rational number = surd

اصم به معنی کر و ناشنوا است و گنگ به کسی که کلمات را نتواند ادا کند. در ریاضی اگر عدد طبیعی n مجذور کامل نباشد ، آن گاه عددی اصم (گنگ) است.

مانند می دانیم امکان نمایش این اعداد به صورت کسر وجود ندارد ،بنابراین «هر عدد حقیقی که گویا نباشد ، عدد اصم (گنگ) نامیده می شود.»




محور عددهای حقیقی :

برای نشان دادن یکسری عدد حقیقی روی محور از نمودار استوانه ای شکل استفاده می کنیم . قسمت های هاشور خورده و رنگ شده این نمودار اعضای مجموعه را نشان می دهد.

مثال: نمایش هر یک از مجموعه های زیر را روی یک محور مشخص کنید.




حل:


تمامی عدد های حقیقی بین 2- و 3+ عضو این مجموعه هستند.

دایره ی تو پر و علامت نشان می دهند که 2- عضو مجموعه ی A می باشد و

دایره ی توخالی و علامت > نشان می دهند که 3 عضو مجموعه ی A نمی باشد.

نکته: مجموعه ی A را به صورت (3 و 2-] نیز نشان می دهند که این مجموعه را بازه ی نیم باز 2- و 3 می گویند.





حل:


تمامی عدد های حقیقی بین 0و 4 عضو این مجموعه هستند.

نکته:مجموعه ی B را به صورت (4 و 0)نیز نشان می دهند که این مجموعه را بازه ی باز 0 و 4 می گویند.





حل:


نکته:مجموعه ی C را به صورت[ 3 و 1-] نیز نشان می دهند که این مجموعه را بازه ی بسته 1- و 3 می گویند.





حل:


نکته:مجموعه ی D را به صورت (1 و ∞-) نیز نشان می دهند که این مجموعه بازه ای را نشان می دهد که از سمت راست محدود و از سمت چپ نامحدود است. (∞- را بخوانید: منفی بی نهایت)



نمایش اعداد اَصَم (گنگ):

فرض کنیم یک عدد اصم (گنگ) است ؛ جای تقریبی این عدد را می توان به کمک محاسبه ی جذر تقریبی روی محور مشخص کرد.

مثال: عدد بین کدام دو عدد صحیح متوالی قرار دارد ؟

حل:مقدار تقریبی جذر 5 از عدد 2 بیشتر و از عدد 3 کمتر است ؛ یعنی : اختلاف عدد ی که بین 2 و 3 باشد با عدد 3 بین دو عدد صحیح متوالی صفر و یک قرار دارد . یعنی :


برای مشخص کردن جای دقیق تری از روی محور به ترتیب زیر عمل می کنیم:

الف: مثلث قائم الزاویه مناسبی که طول آن باشد را رسم می کنیم .

ب: دهانه ی پر گار را به اندازه ی وتر این مثلث باز می کنیم و از مبدأ علامتی روی محور در جهت مثبت محور می زنیم.

مثال: در شکل مقابل تعداد ی مثلث قائم الزاویه رسم شده است که در هر کدام یک ضلع زاویه قائمه به طول 1 واحد است.طول پاره خط های OD , OC , OB , OA را حساب کنید.



حل:




نکته:چنانچه مثلث های قائم الزاویه را یکی بعد از دیگری مانند مثال قبل رسم کنیم، شکل زیبای حلزونی بوجود می آید که به کمک آن عددهای , , , و.... را می توان مشخص کرد.




می توانیم روی محور اعداد، نقطه ی متناظر با هر یک از عددهای , , , و ........ را مشخص کنیم. برای این کار به ترتیب زیر عمل می کنیم:

الف: مثلث قائم الزاویه ای با اضلاع 1cm و وتر OA را روی محور اعداد در نظر می گیریم . می دانیم اندازه ی OA با استفاده از رابطه ی فیثاغورس بدست می آید . حال به مرکز O و شعاع OA دهانه ی پرگار را باز کرده و یک کمان می زنیم تا جهت مثبت محور اعداد حقیقی را در نقطه ی قطع کند . نقطه ی متناظر با عدد بدست می آید.




ب: مثلث قائم الزاویه ای با اضلاع و وتر OB را روی محور اعداد در نظر می گیریم .می دانیم اندازه ی OB با استفاده از رابطه ی فیثاغورس بدست می آید . حال به مرکز O و شعاع OB دهانه ی پرگار را باز کرده و یک کمان می زنیم تا جهت مثبت محور اعداد حقیقی را در نقطه ی قطع کند.




ج: به همین ترتیب اعداد , , و....را نیز می توان روی محور اعداد حقیقی نشان داد . کافی است مثلث های قائم الزاویه را به همین ترتیب روی محور ادامه دهیم. شکل زیر چگونگی کار را نشان می دهد


پرش به انجمن:


کاربران در حال بازدید این موضوع: 1 مهمان